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Abstract-The influence of laminar thermosolutal convection on solute segregation and heat transfer in 
the floating zone crystal growth of a dilute binary alloy is considered. The solute gradient is assumed to 
be destabilizing, and the thermal gradient is assumed perpendicular to it. The evolution of non-linear states 
from the critical points predicted by linear theory is studied. For vanishing thermal Rayleigh numbers, 
two solutions, corresponding to upflow and downflow at the meniscus, are obtained. The presence of side 
heating establishes upflow as the preferential direction ; the downflow solution is found to persist for low 
thermal Rayleigh numbers. Flow and heat transfer for high thermal Rayleigh numbers are also computed. 

INTRODUCTION 

THE FLOATING zone process is a technique used in 
the containerless refinement of doped semi-conductor 
materials and binary alloys. In this process, a ring 
heater traverses a rod of alloy material to be purified, 
and melts a cylindrical zone in its path, as shown in 
Fig. 1. Refinement is achieved because the equilibrium 
concentration of dopant is greater in the melt than in 
the solid [l], corresponding to k < 1. At the melting 
interface, the dopant contained in the feed rod is 
absorbed completely into the melt, because it is more 
soluble in the melt than in the solid. At the freezing 
interface, however, all the dopant brought to the inter- 
face by convection and diffusion in the melt cannot 
be absorbed into the newly frozen crystal. Conse- 
quently, a dopant-rich layer forms in the melt at the 
freezing interface. An observer moving with the freez- 
ing interface would register this accumulation as an 
increase in dopant concentration with time. Eventu- 
ally, a ‘steady state’ is reached when the dopant enter- 
ing the zone at the melting interface exactly balances 
the dopant incorporated into the fresh crystal. No 
refinement takes place beyond this point. 

In the absence of secondary convection in the melt, 
the segregation of solute is purely axial and varies 
exponentially, reaching a maximum at the freezing 
interface in steady state [l]. When the solute is lighter 
than the melt fluid and zone traverse is anti-parallel 
to gravity, a potential for the onset of convection 
exists beyond a critical solutal Rayleigh number, as 
with Rayleigh-Benard convection [2]. In addition, a 
horizontal temperature gradient is imposed because 
of meniscus heating by the ring heater. This gradient 
always induces natural convection. The purpose of 
this paper is to study the interaction of these two 
perpendicular gradients. 

Most studies of double diffusive convection in crys- 
tal growth applications have focused on the problem 
of directional solidification of an ingot of binary alloy 

[3]. Here, a two-dimensional rectangular slug of melt 
fluid is solidified progressively from one end, with 
temperature and concentration gradients parallel to 
the direction of zone traverse. The thermal gradient 
is stabilizing, whereas the solute gradient is not. Much 
attention has been paid to the morphological stability 
of the freezing interface [4-81. Analysis of a lead-tin 
system in ref. [5] showed that the coupling between 
convective and morphological instabilities is weak due 
to the great separation of the critical wave numbers. 
Consequently, Hurle et al. [6] examined the linear 
stability of solutal convection in the absence of mor- 
phological effects, i.e. in a melt with a planar interface. 
The critical solutal Rayleigh numbers computed were 
found to be low enough to suggest that solutal con- 
vection is the norm rather than the exception during 
directional solidification. McFadden and co-workers 
[9, lo] have examined numerically the flow transitions 
that occur during directional solidification of a binary 
alloy by assuming a planar interface. Steady-state solu- 
tions are found for solutal Rayleigh numbers about 
four times critical: beyond this, a transition to time 
periodic flows occurred and, finally, aperiodic flows. 

The problem addressed by this work involves a 

somewhat different arrangement of driving forces, 
and finds many similarities with thermoconvective 
instability in bounded cylindrical layers heated from 
below. A very large number of studies for cylinders 
with either insulating or perfectly conducting side 
walls and rigid or shear-free boundaries is available 
in the literature [I l-171. Liang et al. [l l] used a finite 
difference technique to study the axisymmetric flow 
of a fluid with a temperature-dependent viscosity. For 
aspect ratios near unity, the flow structure consists of 
a single roll filling the entire cylinder. Two solutions 
are found, corresponding to either upflow or down- 
flow at the vertical axis of the cylinder. For constant 
fluid properties, these solutions are reflections of each 
other about the horizontal midplane of the cylinder. 
The onset of convection in a cylindrical layer of fluid 
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NOMENCLATURE 

A aspect ratio, L/d t time 

c0 solute concentration in feed rod T temperature 
C dimensionless solute concentration T, temperature of solid-melt interfaces 
li radius of disk V velocity vector with components V,, I’; 
D diffusion coefficient for solute in melt 1:” velocity of zone traverse 

e= unit vector in =-direction V, dimensionless radial velocity, scales to ctjd 

B acceleration due to gravity Ii; dimensionless axial velocity, scaled to a/d 

.I Jacobian matrix, equation (9) X solution vector 
k equilibrium segregation coefficient X’ disturbance vector 

k, conductivity of melt fluid 2 axial coordinate, Fig. 1 
L length of zone. Fig. 1 Z dimensionless axial coordinate, z/d. 
M load matrix, equation (8) 
i”vLc local Nusselt number, equation (5) Greek symbols 
NU average Nusselt number, equation (5) u thermal diffisivity 
P dimensionless pressure, scaled to pct’/d’ 0 dimensionless temperature, (T- T,)/(qd/k,) 

Pe Peclet number. V,,d/D p dynamic viscosity 
Pr Prandtl number. \,/a 1’ kinematic viscosity 

Y heat flux into zone at meniscus c eigenvalue. equation (8) 
I radial coordinate, Fig. 1 0, surface tension 
R dimensionless radial coordinate, r/d Y dimensionless stream-function 

R vector of residues, equation (6) y’, strength of main vortex. 

R% solutal Rayleigh number. 

[&o((l -k)/k) (d3W)1/Pe3 Other symbols 
Ru, thermal Rayleigh number, .~~(~d~~~)d~/~~ V dimensionless gradient operator 
SC Schmidt number, vjD V* dimensionless Laplacian operator. 

t 
DIRECTION OF 

ZONE TRAVERSE i 

GRAVtTY 

t 

computer implemented perturbation techniques for 
tracking flow families and determining their stability. 

The two-phase Rayleigh-Benard problem has been 
studied in using a Galerkin finite element technique, 
coupled with Newton iteration for the solution of the 

COMPUTI\T,ONAL free melt-solid interface shape in ref. [ 181. The flow is 
MODlJlE assumed driven by thermal gradients alone. Again, 

two soiutions corresponding to upflow and downflow 
at the axis are found, but the bifurcation is not perfect ; 

’ CRYSTAL 

I 

FIG. I. The physical configuration. 

the deformation of the melt-solid interface breaks the 
symmetry between the two families. Cases with side 
heating, and top and bottom insulated boundaries 
corresponding to vertical Bridgeman growth, have 
also been considered in refs. [lS, 191; side heating is 

bounded by rigid side walls and heated from below 

has been investigated by Charlson and Sani [12]. 
Axisymmetry is assumed, and upper and lower 
bounds to the critical Rayleigh numbers computed. 
Again the two solutions noted by Liang et al. are 
found. For small aspect ratios (L/d), multiple rolls in 
the radial direction are found past the critical point. 
The stability of axisymmetric flows to non-axisym- 
metric disturbances has been investigated in ref. [13] ; 
it is found that a transition from axisymmetric to non- 
axisymmetric conjurations may occur for certain 
ranges of aspect ratio near unity. Finite amplitude 
Aows in the same geometry have been computed in 
ref. [14] using a Galerkin technique. Yamaguchi et 

al. [15] have investigated the same geometry using 

seen to make one family of flows inaccessible from the 
low Rayleigh number end. 

In this study, the destabilizing gradient is the expon- 
ential axial variation of solute in the melt. The onset 
of convection and the subsequent evolution of finite 
amplitude flows is first computed for Ra, = 0. The 
changes in flow structure as Ra, is increased are then 
studied. Their influence on the overall heat transfer 
and solute distribution is examined. 

FORMULATION 

The geometry studied is that in Fig. 1. Invoking the 
Boussinesq approximation, the dimensionless equa- 
tions governing the steady, axisymmetric, incom- 
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pressible motion of a Newtonian fluid in the zone may 
be written in the frame of reference of the heater as 

v*v=o 

V*VV = -VP+PrV2V-RaTPrO 

- (Ra, Pe’k/(l -k)) (P?/Sc)C 

v-ve= v2e 

V.VC = (Pr/Sc)V’C. (1) 

The boundary conditions on the velocity and tem- 
perature may be written as 

V, = 0, V, = Pe(Pr/Sc), 0 = 0, 0 sG R G 1, 

Z=O, A 

av. ae 
V,=z=z=O, O<ZIA, R=O 

av. ae 
Vr=$=O. aR -=l, O<Z<A, R=l. (2) 

The boundary conditions for solute transport are 

ac 
z=Pe(c-l), Z=O, O<R<l 

ac 
-=Pe(l--k)C, Z=A, O<R<l az 

ac 
i7R = 0, 0 < Z < A, R = 0,l. 

In the above formulation, the deformation of the free 
surface has been neglected; this assumption is valid 
for crystal growth applications with small capillary 
numbers (pa/a,) and 90” contact angles between the 
solid and the meniscus. Marangoni convection has 
not been taken into account in order to focus on the 
natural convection process. A decoupling of mor- 
phological and convective instabilities allows the 
assumption of flat melt-solid interfaces if radial inter- 
face deformation due to the convective motion is 
assumed small. This latter assumption may be made 
if qd/kc << 1, and typically applies to centimeter-scale 
zones. The influence of interfacial deformation on 
point of onset of convection has been found to be 
small in ref. [ 181. The boundary conditions for solute 
transport assume that density of solid and melt are 
equal and that diffusion of solute in the feed rod is 

negligible. The parameters governing heat, mass and 
momentum transfer in this problem are the solutal 
Rayleigh number Ra,, the thermal Rayleigh number 
Ra,, the Prandtl number Pr, the Schmidt number SC, 
the zone traverse Peclet number Pe, the aspect ratio 
A and the equilibrium segregation coefficient k. 

The behavior of the secondary flow is quantified by 
extremum values of the stream-function defined as 

‘I’ = 
s 

V,RdR. (4) 

Heat transfer behavior may be understood in terms of 
local and average Nusselt numbers at each interface, 
which are defined as 

ae 
N" = E interface 

(5) 

NUMERICAL TECHNIQUE 

Computation ofjinite amplitudeflows 
The governing equations and boundary conditions 

(equations (l)-(3)) are discretized using the control- 
volume scheme described in ref. [20] in conjunction 
with the power-law profile assumption also described 
in ref. [20]. Primitive variables are used, with a sequen- 
tial solution of the continuity, momentum, energy and 
solute transport equations. Pressure-velocity coup- 
ling is handled using the SIMPLER algorithm [20]. 

This procedure yields a set of discrete algebraic equa- 
tions which is solved iteratively, using a line-by-line 
application of the Thomas algorithm [20]. Successive 
substitutions are used to update the non-linear 
coefficients, with the under-relaxation procedure 
of ref. [20] to effect convergence of the iterative 
procedure. 

Determination of the onset of convection 
The discretized forms of equations (l)-(3) may be 

written as 

R(X, Ra,) = 0 (6) 

where R is the vector of the residuals of the discrete 
algebraic equations. The critical value of the solutal 
Rayleigh number Ra,.,. at the onset of convection, 
has been computed by examining the linear stability 
of equation (6). Perturbing equation (6) by a small 
disturbance yields 

X(t, Ra,) = X(Ra,)+X’exp (crt). (7) 

Substituting equation (7) into equation (6) and sub- 
sequent linearization yields the eigenvalue problem 

J(X, Ra,)X’ = aMX’. (8) 

Here, J is the Jacobian matrix the elements of which 
are 

aRi 
J, = ax,. (9) 

The linear stability of the base state X(Ra,) may be 
completely determined by examining the eigenvalues 
of equation (8). However, the computation of eigen- 
values for systems of several thousand equations is 
not feasible. Instead,, the procedure adopted in ref. 
[ 151 is employed here. The locus of marginal stability 
may be found by setting both the real and imaginary 
parts of c = 0. Thus, the problem of determining the 
onset of convection reduces to the determination of 



1926 J. Y. MURTHY and P. LEE 

those values of the solutal Rayleigh number for which 
the Jacobian J is singular. In this study, a simple 
bisection algorithm is used which determines the zeros 
of the determinant of J as a function of the solutal 
Rayleigh number. The determinant is computed from 
the L-U decomposition of J; the sparsity of J is 
exploited by the use of the sparse matrix package 
Y12M [21]. Computations of the onset of convection 
in the case of a rigid cylinder with bottom heating were 
performed to ascertain the accuracy of this method. 
Critical Rayleigh numbers computed using a 16 x 16 
grid were within 5% of those obtained by Charlson 
and Sani [ 121. For most aspect ratios, the results were 
within 2%. 

The computations of finite amplitude flows were 
performed on a 30 x 30 non-uniform grid; com- 
putations on finer grids indicate that the strength of 
secondary cells and the average Nusselt number at the 
melting interface is accurate to 3%. The computation 
of critical Ra, was performed on a 24 x 24 grid. For 
Pe = 10. k = 0. I, A = 1 .O and SC = 5.0. the critical 
Rayleigh number changes by a maximum of 4% com- 
pared with those on a 30 x 30 grid. For most com- 
putations, the change is less than 2%. Further grid 
refinement requires more memory than available ; the 
pivoting practices used in the package Y 12M result in 
relatively dense L-U decompositions and memory 
requirements increase rapidly with grid refinement. 

An aspect ratio A = I .O is assumed throughout this 
study. The computation of flow and heat transfer in 
the non-linear regime is restricted to 0 < Ra, < 10”. 
0 < Ra,, < 4.5 x 10’. SC = 5.0, k = 0.1 and Pe = 1.0. 

Two values of the Prandtl number are considered. 
Pr = 0.01 and 1.0. 

RESULTS 

Flows neur Ra, = Ra,,, 

The linear stability problem is governed by the 
Peclet number, the Schmidt number, the aspect ratio 
and the equilibrium segregation coefficient k. The base 
state is described by 

V, = 0, Vz = Pe(Pr/Sc) 

(10) 

The variation of the first critical solutal Rayleigh 
number with Peclet number is presented in Figs. 2(a) 
and (b). the former being plotted for Pe < I and 
the latter for Pe > 1. In Fig. 2(a), the ordinate is 

(Ra,,c Pe’), and represents a resealing appropriate 
for the low Pe limit. The critical Rayleigh number is 
obtained for five sets of parameters, SC = 5.0, k = 0.1, 
0.2, 0.3, and k = 0.1, SC = 1.0, 10.0. It is seen from 
Fig. 2(a) that all five curves collapse onto a single 
curve when scaled in this way. In Fig. 2(b), again, the 
critical Ra, based on the boundary layer thickness is 
found to be primarily a function of the Peclet number 
for Pe < 4 or so. Beyond this, the strength of the op- 

A= 1.0 
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FIG. 2. Variation of the critical solutal Rayleigh number with 
Peclet number for A = 1.0 for : (a) Pe < 1 ; (b) Pe > 1. 

posing flow due to zone translation (= Pe/Sc) begins 
to exert a significant influence. As a result, the critical 
Rayleigh number is no longer a function of Pe alone. 

The flows evolving from the first critical Rayleigh 
number are presented in Fig. 3. Here, the strength of 
the secondary flow is plotted vs the solutal Rayleigh 
number. Contours of the stream-function, tem- 
perature and solute concentration for Ra, = 4.5 x lo4 
are drawn in Fig. 4. Two families of flows are seen to 
evolve from the point of bifurcation, and correspond 
to upflow and downflow at the meniscus. The exist- 
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FIG. 3. Details of the bifurcation at Ra, = Jhc with A = 1.0, k = 0.1, SC = 5.0. 

ence of these two families of solutions in the problem 
of thermoconvective stability in cylindrical enclosures 
has been noted both experimentally and analytically 
[ 111. As pointed out in ref. [ 111, the thermoconvective 
stability problem with fixed temperature conditions 
at 2 = 0 and A and adiabatic side walls. has the 
property 

{I’,, - I’,, -8’. R, 1 -Z}downaow 

where 

= {V,, ~;,@‘,R,Z).,“,, (11) 

B’ = e-z. 

In the problem considered in this paper, the boundary 
conditions on concentration at Z = 0 and A (equation 
(3)) destroy this reflective symmetry about the hori- 
zontal midplane, and the perfect bifurcation noted for 
the constant viscosity case in refs. [ 11, 151 is no longer 
found. For low Peclet numbers, the bifurcation is 
transcritical. with the downflow solution evolving 

subcritically in the vicinity of the bifurcation point 
and reaching a limit point in Ra, as seen in Fig. 3(b) ; 
thereafter, the solution evolves towards increasing 
Rayleigh numbers. As the Peclet number is increased 
further, both branches initially evolve subcritically 
and reach a limit point in Ra,, as in Fig. 3(c) ; beyond 
this both solutions evolve in the direction of increasing 
Rayleigh number. The Jacobian of the discrete 
algebraic equations becomes singular at limit points 
[22] ; consequently, it is impossible to trace solution 
families through limit points unless special con- 
tinuation procedures are adopted. In this study, the 
various solution branches were traced by regulating 
direction of recirculation of the initial guess. The 
initial subcritical evolution of the flow near the critical 
point could not be traced in this manner. Com- 
putations using the trivial solution as a guess 
invariably yielded trivial solutions ; computations 
using guesses from runs with Ra, > Ra,,, invariably 
yielded solutions on the same branch, but past the 

STREAM FUNCTION 

iscl a 0 

J: = -1.0463 

‘L,= 1.0776 

CONCENTRATION TEMPERATURE 

Ii3 02 03 

04 

Pr=l.O 

01 0.2 03 
04 El Pr=l.O 

D-FAMILY 
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FIG. 4. Contours of the stream-function, concentration and temperature for the two families evolving from 
Ra, = Ra,.,. forRa,=4.5x10“,A=1.0,k=0.1.&=5.0andPe=1.0. 
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subcritical limit point. Continuation procedures 
employing the pseudo-arc length parametrization of 
Keller [23] are required to trace the solution through 
limit points. 

The Pe = I .O case is studied in greater detail in Figs. 
5 and 6. With Ra, = 0. the upflow solution is found 
to persist to at least a solutal Rayleigh number of 
4.5 x 10’. The downflow solution encounters a limit 
point at about Ra, = 3.6x IO”, and attempts to 
recover it using the iterative procedure described 
above always produce the upftow solution beyond 
this point. This behavior is quite different from that 
observed in ref. [ 151; here, both upflow and downflow 
solutions encounter limit points, so that there are 
no stable two-dimensional solutions beyond the limit 
point. Periodic motions of the type noted in ref. [lo] 
cannot be found using a steady procedure : however, 
the transient-like under-relaxation scheme used [20] 
always led to a converged steady-state solution. 

The influence of a non-zero thermal Rayleigh num- 
ber is to rupture the connectivity between the two 
families of flows, so that only the upflow solution is 
accessible from the low Ra, end. The trivial solution 
described by equation (IO) is no longer a solution to 
the thermal boundary conditions; instead, the 
strength of secondary convection increases gradually 
from a non-zero value at RaM = 0, with upflow at the 
meniscus. This behavior has been noted elsewhere, for 
example, in the case of thermal convection in a box 
heated from below, with imperfectly insulated side 
walls [24, 251. The downflow solution is now isolated 
from this family of flows, and becomes increasingly 
so as Ra, is increased. The behavior for Pr = 1.0 

40.0 7 
30.0 

20.0 

100 
L 
5 

5 
0.0 

-10.0 

-20.0 

%l 
FIG. 5. The influence of RaT on the bifurcation at Ra, = 

ROM.= for Pr = 1.0. A = 1.0, k = 0.1, SC = 5.0 and Pe = 1.0. 

is presented in Fig. 5. For Ra, = 103, the downflow 
solution exists for 1.422 x lo4 < Ra, < 3.9 x 106; for 
Ra, = 2 x lo’, the solution is found for 6.73 x 10“ < 
Ra, < 3.9 x 106. For Ra, = 104, the solution is 
restricted to 9.6 x lo5 < Ra, < 3.9 x 106. For Ra, = 

105, the entire downflow solution branch is un- 
stable. Similar behavior is seen for Pr = 0.01 in 
Fig. 6, albeit for much lower thermal Rayleigh 
numbers. Thus, for Ra, = 10, the downflow solution 
exists for 1.7 x lo4 < Ra, < 3.6 x 106; for Ra, = 20, 
it is found in the range 9.63 x lo4 < Ra, < 3.6 x 106. 
By Ra, = 100, downflow is found only in the narrow 
range 2.2 x 10’ < Ra, < 4.1 x 10’. The dominance of 
thermal convection over solutal convection for 
Pr/Sc K 1 is evident from the VI momentum equation 
in equations (1). 

Attempts to compute flows corresponding to higher 
eigenmodes did not yield stable steady solutions. Simi- 
lar behavior was noted in ref. [15] for the case of a 
rigid cylinder heated from below. 

Thermosolutal convection at high RaT 

The evolution of the family of solutions cor- 
responding to upflow at the meniscus was traced up 
to Ra, = lo6 for A = 1.0, SC = 5.0, Pe = 1.0 for 
Pr = 0.01 and 1.0, with 0 < Ra, < 4.5 x 10’. Stable 
steady solutions were always found in this range of 
values. Contours of the stream-function, temperature 
and solute concentration are presented in Fig. 7 for 
Pr = 0.01, and in Fig. 8 for Pr = 1.0. For Pr = 0.01. 

the strength of the secondary flow, Y’,, is seen to 
increase as the thermal Rayleigh number increases. 

a- 

, - 

,- 

I- 

Rob.4 
FIG. 6. The influence of Ru, on the bifurcation at Rq,, = 

RaM,c for Pr=O.Ol, A=l.O, k=O.l. &=5.0 and 
Pe = 1.0. 
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The flow is viscosity-dominated at Ra, = 103. By 
RaT = lo’, two small recirculation bubbles appear, 
one near the axis and the other at the meniscus. Their 
strengths are Y’, and YM, respectively. The latter dis- 
appears when the Rayleigh number is increased to 
106. The solute in the zone is well mixed by convection 
even for low Ra, values. The temperature solution for 
Ra, = lo’ is the conduction solution and is symmetric 
about the horizontal mid-plane. As Ru, is increased, 
heat supplied at the meniscus is delivered almost 
exclusively to the outer edge of the melting interface 
and the mean temperature of the melt and the 

maximum meniscus temperature are seen to fall. For 
Pr = 1.0, the secondary flow penetrates the melt to a 
greater extent, and is stronger. A tendency for the 
fluid to lift off the freezing interface is exhibited for 
high Ra,. This appears to be a result of local thermal 
gradients set up by the impinging flow. The con- 
centration field is less homogeneous for high Pr than 
for low Pr, and substantial radial segregation exists 
at the freezing interface for Pr = 1 .O. 

For the thermal boundary conditions specified in 

this paper, the heat supplied at the meniscus must 
equal the heat transfer to the melting and freezing 
interfaces. Thus, for an aspect ratio of unity, the aver- 

age Nusselt numbers at the melting and freezing inter- 
faces defined by equation (5) must always sum to two. 
The average Nusselt number at the melting interface 
is plotted vs the thermal Rayleigh number in Fig. 9. 
For Ra, = 0, Nu Increases with Ra,, but the rate of rise 
is seen to decrease ; it is expected that eventually, the 
curve for Nu will level off. As Ra, is increased, 
the local heat transfer is increasingly skewed towards 
the outer edge, as seen in Figs. IO(a) and (b). The 
increasingly isothermal melt cannot sustain thermally 
driven convection; this leads to a decrease in sec- 
ondary convection, and a more equitable distribution 
of interfacial heat transfer, which, in turn, tends to 
drive stronger thermoconvective flows. The net effect 
is that an optimum configuration is reached such that 
increases in Ru, do not result in indefinitely large 
secondary motions. The same is true for pure solute- 
driven convection ; increased mixing by the secondary 
flow tends to homogenize the melt and actually 

RaM =4.5x 106, Pr=O.Ol, Pe=l.O, Sc-5.0 

RaT= IO3 

$=0.274, $A=O.O. $M=O.O 

RaT= IO6 

‘#“=5.534, qA=0.032, +M= 0.0 

FIG. 7. Contours of the stream-function, concentration and temperature for Pr = 0.01, RaM = 4.5 x 106. 

A=l.O,k=0.1.Sc=5.0andPe=l.O. 
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RoM=4.5xlo: Pr=l.O. Pe=l.O, SCz5.0 

RaT= IO4 

9.0 

94 q 9.6 

100 
+;6,923 

10.0 
$= 7.729 

RaT= IO6 
9.0 

0.2 

01 q 0.1 

0.05 

FIG. 8. Contours of the stream-function. concentration and temperature for Pr = 1.0, RaM = 4.5 x 106, 
A = 1.0, k = 0.1, SC = 5.0 and Pe = 1.0. 

decreases the driving forces, which, in turn, leads to tendency for the flow to regulate itself is clearly a 
less mixing and larger concentration gradients. Thus, result of the Neumann boundary conditions on tem- 
for Ra, = 103, Pr = 1 .O. the curves for the various perature at the meniscus, and the solute boundary 
Ra, are seen to approach a constant Nzr value. This conditions, equations (3). 

002 
r& =I.11 Ra, 

1 

1; 

250 

I25 

---- Pr = 0.01 

- Pr 1.0 s 
Pe=LO 
k-0.1 
SC = 5.0 
A= 1.0 

I OOOL I I 

IO3 lo4 Ra IO’ IO6 
f 

FIG. 9. The variation of the average Nusselt number at the melting interface with Ra, for A = 1.0, k = 0.1, 
SC = 5.0 and Pe = 1.0. 
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R 

Rc. 10. The variation of local Nusselt number along the 
meitingin~erfacefor A = l.O,k = 0.1, Se = 5.0and Pe = 1.0 

for: (a) Pr = 1.0; (b) Pr = 0.01. 

Local and average heat transfer is seen to be nearly 
independent of Ra, for PrlSc << 1 in the range of Ra, 

considered. As seen in Fig. 8, the melt concentration 
is very nearly homogeneous even for RUG = 103, and 
has no effect on buoyant convection. Thus, for crystal 
growth applications, where Prandtl numbers of 
O(lO-*) are common, it appears that the flow is driven 
almost entirely by thermal convection unless 

Pe3 

or greater. 

CONCLUSIONS 

Thermosolutal convection in a floating zone has 
been computed for two different Prandtl numbers. 
When the thermal Rayleigh number is zero, the onset 
of convection is computed as a bifurcation from the 
quiescent state. Two solutions, corresponding to 
upflow and downflow at the meniscus are found. For 
non-zero Ra,, the upflow solution becomes the prc- 
ferred family if computations commence from the zero 
RuM limit; the transition is gradual, i.e. there is no 
bifurcation. For high values of Ruf, the heat transfer 

and the concentration field are largely independent of 
Ra, if Pr/Sc is small. 

The realization of the two families of solutions 
obtained in the computations is probably very difficult 
in practice. Even small values of the thermal Rayleigh 
number make the downflow solution inaccessible from 
the zero Ra, end ; specific experimental strategies 
are required to isolate the various solution branches. 
In practice, the steady-state solutions computed here 
are the culmination of an unsteady process in 
which the rates of development of the thermal, vel- 
ocity and concentration boundary layers differ widely. 
For Pe < 1, and Pr/Sc < 1, thermal convection due 
to side heating will probably develop faster than the 
concentration boundary layer, and will determine the 
direction of the recirculation. The nature of the bifur- 
cation itself may change if planar interfaces are not 
assumed. This study is restricted to low Peclet num- 
bers of zone traverse ; practical values vary widely, 
and may be as high as IO*-103. For Pe >> 1, the con- 
centration boundary layer is U(Pe- ‘) and is extremely 
difficult to resolve accurately. Nevertheless, the pre- 
sent study provides a basis for understanding the 
behavior of more complex problems. 

No attempt has been made in this study to formally 
establish the stability of various solution branches. 
Preliminary attempts to duplicate the results of ref. 
[15] yielded only the stable solutions reported in that 
study ; the unstable solutions traced by Chang and 
Brown could not be realized. As noted in ref. [20], the 
under-relaxation procedure employed in this study 
for the solution of the non-linear algebraic equations 
resulting from discretization is identical to the fully 
implicit procedure for solving unsteady problems. 
Each iteration is exactly equivalent to a time step 
for linear problems ; the convergence of the iterative 
procedure to a solution is equivalent to the achieve- 
ment of steady state. Numerical round-off imposes 
random disturbances on the flow; if these dis- 
turbances do not grow with iteration (time), con- 
vergence to a solution is achieved. In this respect, the 
numerical procedure employed here behaves like an 
experiment : only stable solutions may be physically 
realized. 
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UNE ZONE FLOTTANTE EN CONVECTION THERMOSOLUTALE: CAS D’UN 
GRADIENT INSTABLE DE SOLUTE 

R&urn-n considere l’influence de la convection thermosolutale laminaire sur la sigrtgation du sol& 
et sur le transfert de chaleur dans la zone flottante pendant la croissance cristalline d’un alliage binaire 
diluC. Le gradient de solutt est suppost: Ctre dtstabilisant et le gradient thermique lui est perpendiculaire. 
On ktudie I’tvolution des ttats non lineaires a partir des points critiques prkdits par la thtorie lintaire. 
Pour un nombre de Rayleigh thermique s’&vanouissant, deux solutions sont obtenues qui correspondent 
pour un mouvement ascendant et descendant au mtnisque. La prksence d’un chauffage lateral etablit le 
mouvement ascendant comme prtfirentiel ; la solution descendante persiste pour les faibles nombres de 

Rayleigh. On calcule aussi l’&coulement et le transfert de chaleur pour les nombres de Rayleigh tleds. 

KONVEKTION INFOLGE VON TEMPERATUR- BZW. 
KONZENTRATIONSGRADIENTEN IN EINEM STRt)MENDEN BEREICH : DER FALL 

EINES VEtiNDERLICHEN GRADIENTEN DES GEL&TEN STOFFES 

Zusammenfaaung-Es wird der EinfluD der laminaren, durch Temperatur- und Konzentrationsgradienten 
getriebenen Konvektion auf die Abscheidung des geltisten Stoffes und den Wiirmetransport fiir das 
Kristallwachstum im striimenden Bereich einer verdiinnten, biniiren M&hung betrachtet. Der Gradient 
des gel&ten Stoffes w&d als destabilisierend angenommen, der Temperaturgradient sol1 senkrecht dazu 
stehen. Die Entstehung nicht-linearer ZustPnde vom kritischen Punkt aus, die die lineare Theorie voraus- 
sagt, wird betrachtet. Fiir verschwindende thermische Rayleigh-Zahlen erhllt man zwei LGsungen, die 
einem aufwlrts bzw. abwHrts gerichteten Strom am Meniskus entsprechen. Eine seitlich vorhandene 
Beheizung fiihrt bevorzugt zu aufwlrts gerichteter Strijmung ; die Lasung fiir AbwlrtsstrGmung bleibt fiir 
kleine thermische Rayleigh-Zahlen bestehen. AuBerdem werden StrGmung und WIrmetransport fiir groDe 

thermische Rayleigh-Zahlen berechnet. 

TEPMOKOHuEHTPAqHOHHAX KOHBEKqWCr B 30HE @JIOTAqMM: CJIYYAfi 
HEYCTOnYHBOI-0 I-PAAHEHTA KOHuEHTPAqklki PACTBOPEHHOI-0 BEUECTBA 

AnuoTalul*PacchtaTpHsaeTcn Bnmnme nahtmiapHoii TepMoKoHueHTpaxuiomioii KoriBeKuti~ Ha amene- 
HBe paCTBOpeHHOr0 BeIIWTBa IiTeMOlTepeHOC I-lpHpOCTe KpHCTaNla B 30He l$JIOTaUHEipa36aBJIeHHOrO 

6mrapHoro cnnasa. ~pennonaraeTcr, YTO rpanweHT KoHqeHTparula pacTBopeHHor0 BeUlecTBa ff~nffe~~l 
necTa6ana%ipyronni~ @axcTopoM B sT0 TeMnepaTypHbrii rpameHT HanpasneH nepnewuiKynrpH0 ehty. 

LiccnenyeTcn npencKa3aHHbIii nuHeiiHofi Teopueii npouecc pa3miTsin HenmiefiHhtx coc~on~ti nocne KPW- 
TBY~CKI~X ToYeK. II~H CT~~MKIIWXCR K Hyn10 3HaveHHnx Tennonoro sicna Pmen nonyyeiibl nBa 

PeIIIeHEiK, COOTBeTCTByl0ouIHe BOCXOLVlIUeMy Ii HliCXOAXIUeMy IlOTOKaM B o6nacra MeHHCKa. 6OKOBOfi 
Harpee nbl3bIBaeT B OCHOBHOM ~0c~0n~ii 110~0~.HaiiqeHo,~~o npH M~JIM~ TennoBbIx qsicnax P3nen 
Ha6nlonaeTcR HBcxoAKL@? noToK. PaccqHTaHbr Tarcnce TeereHHe H TennonepeHoc np~ 6onbmwx 3Haye- 

HuXx Tennonoro YHcna P3ner. 


